N-Methylated Products of the *Solanum* Steroidal Alkaloids Tomatidine and Solasodine

By Hugo E. Gottlieb,* Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel Igor Belic,* Radovan Komel, and Miljenko Mervic,* Institute of Biochemistry, Faculty of Medicine, Edvard Kardelj University, Ljubljana, Yugoslavia

The Solanum steroidal alkaloids tomatidine and solasodine contain a spiro-ring junction with azaketal functionality. The conversion of the natural products to their *N*-methylated derivatives involves intermediates in which the formerly spiro-carbon (C-22) is sp^2 hybridized, and therefore the stereochemical information at this centre is lost. ¹³C N.m.r. analysis is used to show that methylation of tomatidine (22*S*,25*S*) results in one (22*S*,25*S*) product, while the same treatment on solasodine (22*R*,25*R*) affords two isomers that can equilibrate in solution, with 22*R*,25*R* (major) and 22*S*,25*R* (minor) stereochemistry. The ¹³C n.m.r.-derived conformations of the products suggest an explanation for these results.

DURING a study of microbial transformations of Nmethylated derivatives of *Solanum* steroidal alkaloids,¹ it came to our attention that the configurations and the conformations of some of these derivatives were not unambiguously established. In particular, in the case of alkaloids containing a spiro-centre at C-22, all methylating procedures involve intermediates in which this carbon is sp^2 -hybridised (see below). Consequently, re-closure of ring E may give rise to two configurations at C-22. Alkaloids containing both possible C-25 configurations occur in nature, *e.g.* tomatidine (1a) (22S,25S) and solasodine (1b) (22R,25R). The stereochemistry at C-25 might be expected to influence the course of the reclosure reaction.

The first method for obtaining such N-methylated derivatives was described by Sato *et al.*² It consists of ZnCl₂-catalysed cleavage of the C-22–O bond to an imine, the open form being trapped by acetic anhydride [*cf.* (2a), (2b)]. This acetate is subsequently N-methylated

(1a)

with MeI and re-closed by basic hydrolysis of the acetate moiety. When applied to tomatidine (1a), this procedure led to a single product.² A few years later, Uhle ³ prepared *N*-methylsolasodine by a different method, and isolated two isomeric compounds. Neither group of workers could prove unambiguously the stereochemistry of their products. Recently, Bird *et al.*⁴ prepared *N*-

(2a)

methylsolasodine by Sato's method; one pure compound crystallised in high yield from the reaction mixture. ¹³C N.m.r. analysis suggested this to be the 22R,25R isomer.

In view of the ambiguity of these results we decided to undertake a 13 C n.m.r. study of the course of *N*methylation of tomatidine (1a) and solasodine (1b) by Sato's method. This task was made possible by our 13 C n.m.r. data of these starting materials.⁵

RESULTS

N-Methyltomatidine.—Tomatidine (1a) was converted to pseudotomatidine diacetate (2a) by the procedure of Sato et $al.^2$ The ¹³C (see Table 1) and ¹H n.m.r. (see Experimental section) data are in agreement with the structure. This tetrahydropyridine derivative was transformed via its methiodide salt into N-methyltomatidine (4a).² Even the crude, uncrystallised product proved to be pure (>95%) by n.m.r.

The 13 C n.m.r. spectrum allows the assignment of this compound to the stereochemistry (4a). Thus, comparison of its chemical shifts (see Table 1) with those of tomatidine

TABLE 1

¹³C N.m.r. data ^a

Carbon	(2a) b	(4a)	(2b) ^ø	(3b) ø	(4b)	(5b)
1	36.6	37.0	36.9	36.9	37.3	37.3
$\overline{2}$	27.5	31.4	27.7	27.7	31.6	31.7
3	73.7	71.1	73.8	73.9	71.8	71.8
4	34.0	38.2	38.1	38.1	42.3	42.3
5	44.6	44.9	139.8	139.8	140.9	140.9
6	28.9	28.7	122.3	122.4	121.4	121.5
7	31.8	32.2 °	31.7	31.7	32.2	32.3
8	35.0	34.8	31.4	31.5	31.2	31.2
9	53.9	54.5	50.0	50.0	50.2	50.2
10	35.5	35.6	36.6	36.6	36.7	36.7
11	21.0	21.2	20.8	20.8	21.0	21.0
12	39.8	40.5	39.6	39.8	40.3	40.3
13	42.3	41.4	42.0	42.2	41.3	41.1
14	54.1	55.5	54.2	54.6	55.7	55.7
15	34.6	32.4 °	34.6	34.5	30.8 °	32.3
16	75.4	77.8	75.0	74.9	84.9	77.6
17	56.5	61.5	56.4	59.0	64.1	61.5
18	13.2	17.0	13.0	12.7	16.5	16.7
19	12.2	12.4	19.3	19.3	19.4	19.4
20	39.9	37.0	40.8	31.5	43.4	37.3
21	18.4	15.1	18.8	21.5	15.1	15.6
22	173.4	101.5	173.6	150.3	103.2	102.4
23	28.5 °	27.8 ª	28.2 °	95.3	38.7	25.6 °
24	28.2 °	28.0 ^d	27.9 °	31.5	30.0 °	23.1 °
25	27.5	31.4	27.2	26.4	34.1	28.1
26	56.8	60.4	56.7	60.1	59.3	58.3
27	19.2	19.4	19.1	19.3	19.3	17.9
N-Me		34.8		39.5	41.0	34.7

^a See Experimental section for details. ^b δ (MeCO₂) 21.3 \pm 0.1 and 170.4 \pm 0.2. ^{c,d} Signals with the same superscript within any vertical column may be interchanged.

(1a) ⁵ shows only minor differences. Carbons 21, 23, 24, 25, and 27 are virtually unchanged, indicating the equatorial conformation of C-27. On the other hand, the N-Me appears at very high field (34.8 vs. 46.5 p.p.m. in N-methylpiperidine ⁶), and C-20 is shielded by 5.8 p.p.m. relative to (1a), ⁵ indicating a γ -interaction ⁷ and therefore a *cis* relationship between N-Me and H-20. Since the latter is β -oriented, the 22-configuration of tomatidine is conserved, as shown in (4a).

N-Methylsolasodine.—N-Methylsolasodine was prepared from solasodine (1b) by the method of Sato $et al.^2$ Thus,

(1b) was converted into pseudosolasodine diacetate (2b), which afforded (3b). Both these compounds proved to be homogeneous by n.m.r. (see Table 1 and Experimental section), as expected [the chemical shifts of the ring D and side-chain carbons of (2b) and the tomatidine-derived related compound (2a) are very similar, but not identical, since they have opposite C-25 configurations]. Closure of ring E led to N-methylsolasodine. ¹³C N.m.r. analysis of the crude product revealed it to be a mixture of two isomers [(4b) and (5b)] in a ca. 60:40 ratio. From a solution of this material in acetone, crystals were obtained whose ¹³C n.m.r. spectrum indicated them to be the pure (>95%) minor isomer (5b). Its melting point (174-179 °C) agrees fully with one of Uhle's products (175--179 °C). On standing in deuteriochloroform for 2 days, partial equilibration (presumably through O-protonation and cleavage of the C-22-O bond to an intermediate where the C-22 stereochemistry is lost) led to a mixture containing ca. 25% of (4b). The mother-liquors of the crystallisation, however, contained (4b) and (5b) in the same ratio (60:40) as the crude. These results indicate a reversible isomerisation on standing in solution, rather than the existence of a metastable isomer, as suggested by Uhle.³ As reported by Bird et al., crystallisation from methanol leads to pure (4b).4

¹³C N.m.r. analysis allows the identification of the major and minor constituents of the equilibrium mixture as (4b) and (5b), respectively. Thus, for (4b), the C-27 shift is virtually identical to the corresponding carbon in (1a), (1b),⁵ and (4a), showing that this methyl group is equatorial. The C-20 absorption is also unchanged relative to (1a) and (1b),⁵ indicating no γ -effect ⁷ on this carbon, as was the case for (4a). The N-Me group must therefore point away from H-20 to the α side of the molecule, feeling no γ -effect from C-20 and appearing at 6.4 p.p.m. to lower field than in (4a). This configuration is confirmed by the major (*ca.* +7 p.p.m.) shift of C-16 relative to (1a), (1b),⁵ and (4a), due to the loss of a γ -effect, which is transmitted through H-16 α and a C-23 hydrogen [for (1a) and (4a)] or the N-hydrogen or lone pair [for (1b)]. N-Methylation eliminates this interaction.

In the spectrum of (5b), however, the C-16 shift is back at its 'normal' position at δca . 78, and the N-methyl absorption is at high field; therefore the C-22 configuration is opposite to that of solasodine (1b) and the major isomer (4b), with the nitrogen atom towards the β -side of the molecule, as in tomatidine (1a) and its derivative (4a). But due to the 25R configuration of (5b), C-27 cannot remain equatorial. Indeed, its chemical shift, which had remained fixed at δ 19.3 \pm 0.1 in all the compounds with a C-22 spirocentre presented so far, changes to δ 17.9. This difference is smaller than the expected *ca*. 5 p.p.m. shielding in going to an axial methyl group, and the conformation of ring F

	TAB	LE 2							
¹ H N.m.r. data ^a									
(4a)	(4 b)	(5b)	Multiplicity *						
	5.34	5.34	$m (W_{i} 10 Hz)$						
4.08	4.63	4.12	dt (8.5, 7)						
3.58	3.52	3.52	tt (10, 5)						
2.58	$<\!2.45$	2.95	dd (11, 4)						
2.40	2.37	2.37	s (3 H)						
0.91	1.11	0.95	d (3 H) (7)						
0.85	0.87	1.08	d (3 H) (6.5)						
0.84	0.80	0.87	s (3 H)						
0.83	1.03	1.03	s (3 H)						
	(4a) 4.08 3.58 2.58 2.40 0.91 0.85 0.84 0.83	TAB: ¹ H N.m. (4a) (4b) 5.34 4.08 4.63 3.58 3.52 2.58 <2.45 2.40 2.37 0.91 1.11 0.85 0.87 0.84 0.80 0.83 1.03	TABLE 2 ¹ H N.m.r. data ^a (4a) (4b) (5b) 5.34 5.34 4.08 4.63 4.12 3.58 3.52 3.52 2.58 < 2.45						

^a See Experimental section for details. ^b Coupling constants (J/Hz) in parentheses.

for (5b) is probably a twist-boat similar to the one shown on the formula, expressed also in high-field shifts for all the carbons in this ring relative to the 25-epimer (4a).

The ¹H n.m.r. data for the N-methylated compounds (Table 2) are in agreement with these structural assignments. Thus, the 27-Me signal, at δ 0.86 \pm 0.01 when the group is equatorial [(4a), (4b), and (1b) ⁴] is deshielded to δ 1.08 in (5b) (twist-boat ring F). On the other hand, both the H-16 and H-21 signals are deshielded in (4b) [relative to (4a), (5b), and (1b) ⁴] by the interaction of these protons with the *N*-methyl group on the α -side of the molecule.

DISCUSSION

The course of the ring-E re-closure reaction towards the N-methylated alkaloids as shown above (either during the basic hydrolysis of the acetate or in a subsequent equilibration step), can be explained by taking into account the steric interactions around ring F. In all the compounds examined, the C-22-O bond is axial to this ring, while the C-22-C-20 bond is equatorial, a consequence of the much greater steric bulk of the methyl-substituted C-20 as compared to an oxygen atom.*

If C-20 remains equatorial, the re-closure reaction in the solasodine (25R) system must follow one of two courses: (i) retention of configuration (to 22R) leading to an interaction of the 'syn-axial' type (like the one between two 1,3-diaxial substituents in a cyclohexane ring) between the N-methyl and C-21; or (ii) inversion of configuration (to 22S) leading to axial C-27, or loss of the chair conformation for ring F. Both possibilities carry energetically unfavourable, but unavoidable, features. The experimental results show that course (i) is slightly preferred (by ca. 1 kJ mol⁻¹).

In the case of tomatidine (25S), again two outcomes are possible: (i) retention (to 22S), in which case none of the two interactions described in the previous paragraph exists; or (ii) inversion (to 22R), when both interactions would exist. Clearly, now, the re-closure would be expected to follow course (i), and indeed the product of course (*ii*) is not observed (thus the energy difference is $>7 \text{ kJ mol}^{-1}$).

EXPERIMENTAL

The n.m.r. spectra were recorded on Bruker WH-270 (1H) and WH-90 (at 22.63 MHz, ¹³C) spectrometers, operating in

* One of the referees has brought to our attention that a nitrogen analogue of the anomeric effect would also favour an axial oxygen substituent and could contribute to the observed constancy of the axial orientation of the C22-O bond.

the Fourier-transform mode. All chemical shifts given in Tables 1 and 2 are in p.p.m. downfield from internal $SiMe_4$, for solutions in CDCl₃. The ¹³C signals observed in noisedecoupled spectra were assigned by comparison to the reported data for tomatidine (1a) and solasodine (1b); ⁵ by analysis of single-frequency off-resonance decoupled (sford) spectra to obtain multiplicity and residual couplings (and therefore a correlation with the ¹H spectrum); and via inversion-recovery experiments that allow differentiation of carbon types through their relaxation times.

N-Methyltomatidine (4a).—This compound was prepared from tomatidine according to Sato et al.,2 involving an acidcatalysed opening of ring E to give pseudotomatidine diacetate (2a); § 5.16 (td, J 8, 4 Hz; H-16), 4.68 (tt, J 10, 5 Hz; H-3), 3.68 (dd, / 17, 4 Hz; H-26-eq), 2.90 (dd, / 17, 10 Hz; H-26-ax), 2.49 (dq, J 11, 7 Hz; H-20), 2.01 and 1.97 (s, each 3 H, 2 \times MeCO₂), 1.08 (d, 3 H, J 7 Hz, 21-Me), 0.88 (d, 3 H, J 6.5 Hz, 27-Me), 0.85 (s, 3 H, 18-Me), and 0.82 (s, 3 H, 19-Me); ¹³C n.m.r., see Table 1. Compound (2a) was methylated and re-closed to yield N-methyltomatidine (4a), m.p. 216-217 °C (for spectral data see Tables 1 and 2).

N-Methylsolasodine (4b) and (5b) .-- Solasodine was treated with $ZnCl_2-Ac_2O$ in acetic acid by the method of Sato *et al.*² to give pseudosolasodine diacetate (2b); § 5.36 (br d, J 4.5 Hz, H-6), 5.21 (td, J 8, 4 Hz, H-16), 4.68 (m, H-3), 3.62 (dd, J 17, 4 Hz, H-26-eq), 2.97 (dd, J 17, 10 Hz, H-26-ax), 2.03 and 2.00 (s, each 3 H, $2 \times MeCO_2$), 1.10 (d, 3 H, J 7 Hz, 21-Me), 1.03 (s, 3 H, 19-Me), 0.89 (s, 3 H, 18-Me), and 0.85 (d, 3 H, J 6.5 Hz, 27-Me).

Compound (2b) was converted into the methodide which upon reaction with potassium hydroxide solution 2, 4 afforded N-methylsolasodine. The crude product contained two isomers in a ca. 60:40 ratio. Recrystallization from acetone yielded small white crystals, m.p. 174--179 °C (see text).

A travel grant from the Boris Kidrič Fund (Ljubljana, Yugoslavia) is gratefully acknowledged by one of the authors (M. M.).

[0/1780 Received, 19th November, 1980]

REFERENCES

¹ I. Belič, M. Mervič, T. Kastelic-Suhadolc, and V. Kramer, J. Steroid Biochem., 1977, 8, 311. ² Y. Sato, H. G. Latham, jun., and N. Ikekawa, J. Org. Chem., 1960, 25, 1962.

³ F. C. Uhle, *J. Org. Chem.*, 1966, **32**, 792. ⁴ G. Y. Bird, D. J. Collins, F. W. Eastwood, R. H. Exner, M. L. Romanelli, and D. D. Small, Aust. J. Chem., 1979, 32, 783.
 ⁵ R. J. Weston, H. E. Gottlieb, E. W. Hagamann, and E.

Wenkert, Aust. J. Chem., 1977, 30, 917. ⁶ H. E. Gottlieb and H. T. A. Cheung, J. Chem. Res., 1979;

(S) 370, (M) 4060.
⁷ For a definition and examples see *e.g.*: F. W. Wehrli and T. Wirthlin, 'Interpretation of Carbon-13 NMR Spectra,' Heyden and Son Ltd., London, 1978, pp. 28, 37.