N-Methylated Products of the Solanum Steroidal Alkaloids Tomatidine and Solasodine

By Hugo E. Gottlieb,* Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel Igor Belic,* Radovan Komel, and Miljenko Mervic,* Institute of Biochemistry, Faculty of Medicine, Edvard Kardelj University, Ljubljana, Yugoslavia

The Solanum steroidal alkaloids tomatidine and solasodine contain a spiro-ring junction with azaketal functionality. The conversion of the natural products to their N-methylated derivatives involves intermediates in which the formerly spiro-carbon (C-22) is $s p^{2}$ hybridized, and therefore the stereochemical information at this centre is lost. ${ }^{13} \mathrm{C}$ N.m.r. analysis is used to show that methylation of tomatidine ($22 S, 25 S$) results in one ($22 S, 25 S$) product, while the same treatment on solasodine ($22 R, 25 R$) affords two isomers that can equilibrate in solution, with $22 R, 25 R$ (major) and $22 S, 25 R$ (minor) stereochemistry. The ${ }^{13} \mathrm{C}$ n.m.r.-derived conformations of the products suggest an explanation for these results.

During a study of microbial transformations of N methylated derivatives of Solanum steroidal alkaloids, ${ }^{1}$ it came to our attention that the configurations and the conformations of some of these derivatives were not unambiguously established. In particular, in the case of alkaloids containing a spiro-centre at C-22, all methylating procedures involve intermediates in which this carbon is $s p^{2}$-hybridised (see below). Consequently, re-closure of ring E may give rise to two configurations at C-22. Alkaloids containing both possible C-25 configurations occur in nature, e.g. tomatidine (la) $(22 S, 25 S)$ and solasodine (1b) $(22 R, 25 R)$. The stereochemistry at $\mathrm{C}-25$ might be expected to influence the course of the reclosure reaction.

The first method for obtaining such N-methylated derivatives was described by Sato et al. ${ }^{2}$ It consists of ZnCl_{2}-catalysed cleavage of the $\mathrm{C}-22-\mathrm{O}$ bond to an imine, the open form being trapped by acetic anhydride [$c f$. (2a), (2b)]. This acetate is subsequently N-methylated

with MeI and re-closed by basic hydrolysis of the acetate moiety. When applied to tomatidine (la), this procedure led to a single product. ${ }^{2}$ A few years later, Uhle ${ }^{3}$ prepared N-methylsolasodine by a different method, and isolated two isomeric compounds. Neither group of workers could prove unambiguously the stereochemistry of their products. Recently, Bird et al. ${ }^{4}$ prepared N -

(1b)
(22R,25S)

(4b)
(22R, 25R).
$+$

(5b)
($225,25 R$)

Scheme Methylation of tomatidine and solasodine
methylsolasodine by Sato's method; one pure compound crystallised in high yield from the reaction mixture. ${ }^{13} \mathrm{C}$ N.m.r. analysis suggested this to be the $22 R, 25 R$ isomer.

In view of the ambiguity of these results we decided to undertake a ${ }^{13} \mathrm{C}$ n.m.r. study of the course of N methylation of tomatidine (la) and solasodine (lb) by Sato's method. This task was made possible by our ${ }^{13} \mathrm{C}$ n.m.r. data of these starting materials. ${ }^{5}$

RESULTS

N -Methyltomatidine.--Tomatidine (la) was converted to pseudotomatidine diacetate (2a) by the procedure of Sato et al. ${ }^{2}$ The ${ }^{13} \mathrm{C}$ (see Table 1) and ${ }^{1} \mathrm{H}$ n.m.r. (see Experimental section) data are in agreement with the structure. This tetrahydropyridine derivative was transformed via its methiodide salt into N-methyltomatidine (4a). ${ }^{2}$ Even the crude, uncrystallised product proved to be pure ($>95 \%$) by n.m.r.

The ${ }^{13} \mathrm{C}$ n.m.r. spectrum allows the assignment of this compound to the stereochemistry (4a). Thus, comparison of its chemical shifts (see Table 1) with those of tomatidine

Table 1

Carbon	(2a) ${ }^{\text {b }}$	(4a)	(2b) ${ }^{6}$	(3b) ${ }^{\text {b }}$	(4b)	(5b)
1	36.6	37.0	36.9	36.9	37.3	37.3
2	27.5	31.4	27.7	27.7	31.6	31.7
3	73.7	71.1	73.8	73.9	71.8	71.8
4	34.0	38.2	38.1	38.1	42.3	42.3
5	44.6	44.9	139.8	139.8	140.9	140.9
6	28.9	28.7	122.3	122.4	121.4	121.5
7	31.8	$32.2{ }^{\text {c }}$	31.7	31.7	32.2	32.3
8	35.0	34.8	31.4	31.5	31.2	31.2
9	53.9	54.5	50.0	50.0	50.2	50.2
10	35.5	35.6	36.6	36.6	36.7	36.7
11	21.0	21.2	20.8	20.8	21.0	21.0
12	39.8	40.5	39.6	39.8	40.3	40.3
13	42.3	41.4	42.0	42.2	41.3	41.1
14	54.1	55.5	54.2	54.6	55.7	55.7
15	34.6	$32.4{ }^{\text {c }}$	34.6	34.5	$30.8{ }^{\text {c }}$	32.3
16	75.4	77.8	75.0	74.9	84.9	77.6
17	56.5	61.5	56.4	59.0	64.1	61.5
18	13.2	17.0	13.0	12.7	16.5	16.7
19	12.2	12.4	19.3	19.3	19.4	19.4
20	39.9	37.0	40.8	31.5	43.4	37.3
21	18.4	15.1	18.8	21.5	15.1	15.6
22	173.4	101.5	173.6	150.3	103.2	102.4
23	$28.5{ }^{\text {c }}$	$27.8{ }^{\text {d }}$	$28.2{ }^{\text {c }}$	95.3	38.7	$25.6{ }^{\text {c }}$
24	$28.2{ }^{\text {c }}$	$28.0{ }^{\text {d }}$	$27.9{ }^{\text {c }}$	31.5	$30.0{ }^{\text {c }}$	$23.1{ }^{\text {c }}$
25	27.5	31.4	27.2	26.4	34.1	28.1
26	56.8	60.4	56.7	60.1	59.3	58.3
27	19.2	19.4	19.1	19.3	19.3	17.9
$\mathrm{N}-\mathrm{Me}$		34.8		39.5	41.0	34.7

${ }^{a}$ See Experimental section for details. ${ }^{b} \delta\left(\mathrm{MeCO}_{2}\right) \quad 21.3$ ± 0.1 and $170.4 \pm 0.2 . \quad c, d$ Signals with the same superscript within any vertical column may be interchanged.
(la) ${ }^{5}$ shows only minor differences. Carbons $21,23,24,25$, and 27 are virtually unchanged, indicating the equatorial conformation of $\mathrm{C}-27$. On the other hand, the $\mathrm{N}-\mathrm{Me}$ appears at very high field (34.8 vs. 46.5 p.p.m. in N-methylpiperidine ${ }^{6}$), and $\mathrm{C}-20$ is shielded by 5.8 p.p.m. relative to (la), ${ }^{\text {b }}$ indicating a γ-interaction ${ }^{7}$ and therefore a cis relationship between N -Me and $\mathrm{H}-20$. Since the latter is β-oriented, the 22 -configuration of tomatidine is conserved, as shown in (4a).

N -Methylsolasodine.-N-Methylsolasodine was prepared from solasodine (lb) by the method of Sato et al. ${ }^{2}$ Thus,
(1b) was converted into pseudosolasodine diacetate (2b), which afforded (3b). Both these compounds proved to be homogeneous by n.m.r. (see Table 1 and Experimental section), as expected [the chemical shifts of the ring D and side-chain carbons of (2 b) and the tomatidine-derived related compound (2a) are very similar, but not identical, since they have opposite C-25 configurations]. Closure of ring E led to N-methylsolasodine. ${ }^{13} \mathrm{C}$ N.m.r. analysis of the crude product revealed it to be a mixture of two isomers [(4b) and (5b)] in a ca. $60: 40$ ratio. From a solution of this material in acetone, crystals were obtained whose ${ }^{13} \mathrm{C}$ n.m.r. spectrum indicated them to be the pure ($>95 \%$) minor isomer (5b). Its melting point ($174-179{ }^{\circ} \mathrm{C}$) agrees fully with one of Uhle's products ($175-179^{\circ} \mathrm{C}$). On standing in deuteriochloroform for 2 days, partial equilibration (presumably through O-protonation and cleavage of the $\mathrm{C}-22-\mathrm{O}$ bond to an intermediate where the $\mathrm{C}-22$ stereochemistry is lost) led to a mixture containing $c a .25 \%$ of (4b). The mother-liquors of the crystallisation, however, contained (4b) and (5 b) in the same ratio ($60: 40$) as the crude. These results indicate a reversible isomerisation on standing in solution, rather than the existence of a metastable isomer, as suggested by Uhle. ${ }^{3}$ As reported by Bird et al., crystallisation from methanol leads to pure (4b). ${ }^{4}$
${ }^{13} \mathrm{C}$ N.m.r. analysis allows the identification of the major and minor constituents of the equilibrium mixture as (4b) and (5b), respectively. Thus, for (4b), the C-27 shift is virtually identical to the corresponding carbon in (la), (lb), ${ }^{5}$ and (4a), showing that this methyl group is equatorial. The C-20 absorption is also unchanged relative to (la) and (lb), ${ }^{5}$ indicating no γ-effect ${ }^{7}$ on this carbon, as was the case for (4a). The N -Me group must therefore point away from $\mathrm{H}-20$ to the α side of the molecule, feeling no γ-effect from $\mathrm{C}-20$ and appearing at $6.4 \mathrm{p} . \mathrm{p} . \mathrm{m}$. to lower field than in (4a). This configuration is confirmed by the major ($c a .+7$ p.p.m.) shift of C-16 relative to (1a), (1b), ${ }^{5}$ and (4a), due to the loss of a γ-effect, which is transmitted through $\mathrm{H}-16 \alpha$ and a $\mathrm{C}-23$ hydrogen [for (1a) and (4a)] or the N -hydrogen or lone pair [for (lb)]. N-Methylation eliminates this interaction.

In the spectrum of (5b), however, the C-16 shift is back at its ' normal ' position at $\delta c a .78$, and the N-methyl absorption is at high field; therefore the $\mathrm{C}-22$ configuration is opposite to that of solasodine (lb) and the major isomer (4b), with the nitrogen atom towards the β-side of the molecule, as in tomatidine (la) and its derivative (4a). But due to the $25 R$ configuration of (5 b), C-27 cannot remain equatorial. Indeed, its chemical shift, which had remained fixed at $\delta 19.3 \pm 0.1$ in all the compounds with a C-22 spirocentre presented so far, changes to $\delta \mathbf{1 7 . 9}$. This difference is smaller than the expected $c a .5$ p.p.m. shielding in going to an axial methyl group, and the conformation of ring \mathbf{F}

Table 2
${ }^{1}$ H N.m.r. data ${ }^{a}$

Proton	(4a)	(4b)	(5b)	Multiplicity ${ }^{6}$
6		5.34	5.34	$\mathrm{m}\left(W_{\text {; }} 10 \mathrm{~Hz}\right)$
16	4.08	4.63	4.12	dt (8.5, 7)
3	3.58	3.52	3.52	tt (10,5)
26-eq	2.58	<2.45	2.95	dd (11, 4)
$\mathrm{N}-\mathrm{Me}$	2.40	2.37	2.37	$\mathrm{s}(3 \mathrm{H})$
21	0.91	1.11	0.95	d (3H) (7)
27	0.85	0.87	1.08	d (3 H) (6.5)
18	0.84	0.80	0.87	$\mathrm{s}(3 \mathrm{H})$
19	0.83	1.03	1.03	$\mathrm{s}(3 \mathrm{H})$

${ }^{a}$ See Experimental section for details. ${ }^{b}$ Coupling constants $(J / H z)$ in parentheses.
for (5b) is probably a twist-boat similar to the one shown on the formula, expressed also in high-field shifts for all the carbons in this ring relative to the 25 -epimer (4a).

The ${ }^{1} \mathrm{H}$ n.m.r. data for the N-methylated compounds (Table 2) are in agreement with these structural assignments. Thus, the $27-\mathrm{Me}$ signal, at $\delta 0.86 \pm 0.01$ when the group is equatorial $\left[(4 a),(4 b)\right.$, and (1b) $\left.{ }^{4}\right]$ is deshielded to $\delta 1.08$ in (5b) (twist-boat ring F). On the other hand, both the H-16 and H-21 signals are deshielded in (4b) [relative to (4a), $(5 b)$, and (lb) $\left.{ }^{4}\right]$ by the interaction of these protons with the N-methyl group on the α-side of the molecule.

DISCUSSION

The course of the ring-E re-closure reaction towards the N-methylated alkaloids as shown above (either during the basic hydrolysis of the acetate or in a subsequent equilibration step), can be explained by taking into account the steric interactions around ring F . In all the compounds examined, the $\mathrm{C}-22-\mathrm{O}$ bond is axial to this ring, while the $\mathrm{C}-22-\mathrm{C}-20$ bond is equatorial, a consequence of the much greater steric bulk of the methyl-substituted $\mathrm{C}-20$ as compared to an oxygen atom.*

If C-20 remains equatorial, the re-closure reaction in the solasodine ($25 R$) system must follow one of two courses: (i) retention of configuration (to $22 R$) leading to an interaction of the 'syn-axial' type (like the one between two 1,3 -diaxial substituents in a cyclohexane ring) between the N-methyl and C-21; or (ii) inversion of configuration (to $22 S$) leading to axial $\mathrm{C}-27$, or loss of the chair conformation for ring F . Both possibilities carry energetically unfavourable, but unavoidable, features. The experimental results show that course (i) is slightly preferred (by ca. $1 \mathrm{~kJ} \mathrm{~mol}^{-1}$).

In the case of tomatidine (25S), again two outcomes are possible: (i) retention (to $22 S$), in which case none of the two interactions described in the previous paragraph exists; or ($i i$) inversion (to $22 R$), when both interactions would exist. Clearly, now, the re-closure would be expected to follow course (i), and indeed the product of course (ii) is not observed (thus the energy difference is $>7 \mathrm{~kJ} \mathrm{~mol}^{-1}$).

EXPERIMENTAL

The n.m.r. spectra were recorded on Bruker WH-270 ($\left.{ }^{1} \mathrm{H}\right)$ and WH-90 (at $22.63 \mathrm{MHz},{ }^{13} \mathrm{C}$) spectrometers, operating in

[^0]the Fourier-transform mode. All chemical shifts given in Tables 1 and 2 are in p.p.m. downfield from internal SiMe_{4}, for solutions in CDCl_{3}. The ${ }^{13} \mathrm{C}$ signals observed in noisedecoupled spectra were assigned by comparison to the reported data for tomatidine (la) and solasodine (lb); ${ }^{5}$ by analysis of single-frequency off-resonance decoupled (sford) spectra to obtain multiplicity and residual couplings (and therefore a correlation with the ${ }^{1} \mathrm{H}$ spectrum); and via inversion-recovery experiments that allow differentiation of carbon types through their relaxation times.

N-Methyltomatidine (4a).-This compound was prepared from tomatidine according to Sato et al., ${ }^{2}$ involving an acidcatalysed opening of ring E to give pseudotomatidine diacetate (2a) ; $\delta 5.16$ (td, $J 8,4 \mathrm{~Hz} ; \mathrm{H}-16$), 4.68 ($\mathrm{tt}, J 10$, $5 \mathrm{~Hz} ; \mathrm{H}-3$), 3.68 (dd, $J 17,4 \mathrm{~Hz} ; \mathrm{H}-26-\mathrm{eq}), 2.90$ (dd, $J 17$, $10 \mathrm{~Hz} ; \mathrm{H}-26-\mathrm{ax}), 2.49(\mathrm{dq}, J 11,7 \mathrm{~Hz} ; \mathrm{H}-20), 2.01$ and 1.97 (s, each $3 \mathrm{H}, 2 \times \mathrm{MeCO}_{2}$), 1.08 (d, $3 \mathrm{H}, J 7 \mathrm{~Hz}, 21-\mathrm{Me}$), 0.88 (d, $3 \mathrm{H}, J 6.5 \mathrm{~Hz}, 27-\mathrm{Me}$), 0.85 (s, $3 \mathrm{H}, 18-\mathrm{Me}$), and 0.82 (s, $3 \mathrm{H}, 19-\mathrm{Me}$) ; ${ }^{13} \mathrm{C}$ n.m.r., see Table 1. Compound (2a) was methylated and re-closed to yield N-methyltomatidine (4a), m.p. 216--217 ${ }^{\circ} \mathrm{C}$ (for spectral data see Tables 1 and 2).

N -Methylsolasodine (4b) and (5b).--Solasodine was treated with $\mathrm{ZnCl}_{2}-\mathrm{Ac}_{2} \mathrm{O}$ in acetic acid by the method of Sato et al. ${ }^{2}$ to give pseudosolasodine diacetate (2b); $\delta 5.36$ (br d, J $4.5 \mathrm{~Hz}, \mathrm{H}-6$), 5.21 (td, $J 8,4 \mathrm{~Hz}, \mathrm{H}-16$), 4.68 ($\mathrm{m}, \mathrm{H}-3$), 3.62 (dd, $J 17,4 \mathrm{~Hz}, \mathrm{H}-26-\mathrm{eq}$), 2.97 (dd, $J 17,10 \mathrm{~Hz}, \mathrm{H}-26-\mathrm{ax}$), 2.03 and 2.00 (s, each $3 \mathrm{H}, 2 \times \mathrm{MeCO}_{2}$), $1.10(\mathrm{~d}, 3 \mathrm{H}, J 7$ $\mathrm{Hz}, 21-\mathrm{Me}), 1.03(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{Me}), 0.89(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{Me})$, and 0.85 (d, $3 \mathrm{H}, J 6.5 \mathrm{~Hz}, 27-\mathrm{Me}$).

Compound (2b) was converted into the methodide which upon reaction with potassium hydroxide solution ${ }^{2,4}$ afforded N-methylsolasodine. The crude product contained two isomers in a ca. $60: 40$ ratio. Recrystallization from acetone yielded small white crystals, m.p. 174--179 ${ }^{\circ} \mathrm{C}$ (see text).

A travel grant from the Boris Kidrič Fund (Ljubljana, Yugoslavia) is gratefully acknowledged by one of the authors (M. M.).
[0/1780 Received, 19th November, 1980]

REFERENCES

${ }^{1}$ I. Belič, M. Mervič, T. Kastelic-Suhadolc, and V. Kramer, J. Steroid Biochem., 1977, 8, 311.
${ }^{2}$ Y. Sato, H. G. Latham, jun., and N. Ikekawa, J. Org. Chem., 1960, 25, 1962 .
${ }^{3}$ F. C. Uhle, J. Org. Chem., 1966, 32, 792.
${ }^{4}$ G. Y. Bird, D. J. Collins, F. W. Eastwood, R. H. Exner, M. L. Romanelli, and D. D. Small, Aust. J. Chem., 1979, 32, 783.
${ }^{5}$ R. J. Weston, H. E. Gottlieb, E. W. Hagamann, and E. Wenkert, Aust. J. Chem., 1977, 30, 917.
${ }^{6}$ H. E. Gottlieb and H. T. A. Cheung, J. Chem. Res., 1979 ; (S) 370, (M) 4060.
${ }^{7}$ For a definition and examples see e.g.: F. W. Wehrli and T. Wirthlin, 'Interpretation of Carbon-13 NMR Spectra,' Heyden and Son Ltd., London, 1978, pp. 28, 37.

[^0]: * One of the referees has brought to our attention that a nitrogen analogue of the anomeric effect would also favour an axial oxygen substituent and could contribute to the observed constancy of the axial orientation of the C22-O bond.

